
Package: clarify (via r-universe)
October 27, 2024

Type Package

Title Simulation-Based Inference for Regression Models

Version 0.2.1

Description Performs simulation-based inference as an alternative to
the delta method for obtaining valid confidence intervals and
p-values for regression post-estimation quantities, such as
average marginal effects and predictions at representative
values. This framework for simulation-based inference is
especially useful when the resulting quantity is not normally
distributed and the delta method approximation fails. The
methodology is described in King, Tomz, and Wittenberg (2000)
<doi:10.2307/2669316>. 'clarify' is meant to replace some of
the functionality of the archived package 'Zelig'; see the
vignette ``Translating Zelig to clarify'' for replicating this
functionality.

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 3.5.0)

Imports ggplot2 (>= 3.4.0), pbapply (>= 1.7-0), chk (>= 0.9.0), rlang
(>= 1.0.6), insight (>= 0.19.11), marginaleffects (>= 0.20.0),
mvnfast (>= 0.2.6)

Suggests testthat (>= 3.0.0), MatchIt (>= 4.0.0), parallel, knitr,
rmarkdown, Amelia, MASS, betareg, survey, estimatr, fixest,
logistf, geepack, rms, robustbase, robust, AER, ivreg, mgcv,
sandwich

Config/testthat/edition 3

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

URL https://github.com/iqss/clarify, https://iqss.github.io/clarify/

BugReports https://github.com/iqss/clarify/issues

VignetteBuilder knitr

1

https://doi.org/10.2307/2669316
https://github.com/iqss/clarify
https://iqss.github.io/clarify/
https://github.com/iqss/clarify/issues

2 misim

Repository https://iqss.r-universe.dev

RemoteUrl https://github.com/iqss/clarify

RemoteRef HEAD

RemoteSha ab7e624ba3c8277b5001482c2c689b5d0bd93a65

Contents
misim . 2
plot.clarify_adrf . 4
plot.clarify_est . 5
plot.clarify_setx . 8
sim . 9
sim_adrf . 11
sim_ame . 14
sim_apply . 19
sim_setx . 22
transform.clarify_est . 24

Index 27

misim Simulate model coefficients after multiple imputation

Description

misim() simulates model parameters from multivariate normal or t distributions after multiple im-
putation that are then used by sim_apply() to calculate quantities of interest.

Usage

misim(fitlist, n = 1000, vcov = NULL, coefs = NULL, dist = NULL)

Arguments

fitlist a list of model fits, one for each imputed dataset, or a mira object (the output of
a call to with() applied to a mids object in mice).

n the number of simulations to run for each imputed dataset; default is 1000. More
is always better but resulting calculations will take longer.

vcov a square covariance matrix of the coefficient covariance estimates, a function to
use to extract it from fit, or a list thereof with an element for each imputed
dataset. By default, uses stats::vcov() or insight::get_varcov() if that
doesn’t work.

coefs a vector of coefficient estimates, a function to use to extract it from fit, or a list
thereof with an element for each imputed dataset. By default, uses stats::coef()
or insight::get_parameters() if that doesn’t work.

misim 3

dist a character vector containing the name of the multivariate distribution(s) to use
to draw simulated coefficients. Should be one of "normal" (multivariate normal
distribution) or "t_{#}" (multivariate t distribution), where {#} corresponds to
the desired degrees of freedom (e.g., "t_100"). If NULL, the right distributions
to use will be determined based on heuristics; see sim() for details.

Details

misim() essentially combines multiple sim() calls applied to a list of model fits, each fit in an
imputed dataset, into a single combined pool of simulated coefficients. When simulation-based
inference is to be used with multiply imputed data, many imputations are required; see Zhou and
Reiter (2010).

Value

A clarify_misim object, which inherits from clarify_sim and has the following components:

sim.coefs a matrix containing the simulated coefficients with a column for each coefficient
and a row for each simulation for each imputation

coefs a matrix containing the original coefficients extracted from fitlist or supplied
to coefs, with a row per imputation.

fit the list of model fits supplied to fitlist

imp a identifier of which imputed dataset each set of simulated coefficients corre-
sponds to.

The "dist" attribute contains "normal" if the coefficients were sampled from a multivariate normal
distribution and "t({df})" if sampled from a multivariate t distribution. The "clarify_hash"
attribute contains a unique hash generated by rlang::hash().

References

Zhou, X., & Reiter, J. P. (2010). A Note on Bayesian Inference After Multiple Imputation. The
American Statistician, 64(2), 159–163. doi:10.1198/tast.2010.09109

See Also

• sim() for simulating model coefficients for a single dataset

• sim_apply() for applying a function to each set of simulated coefficients

• sim_ame() for computing average marginal effects in each simulation draw

• sim_setx() for computing marginal predictions and first differences at typical values in each
simulation draw

Examples

data("africa", package = "Amelia")

Multiple imputation using Amelia
a.out <- Amelia::amelia(x = africa, m = 10,

cs = "country",

https://doi.org/10.1198/tast.2010.09109

4 plot.clarify_adrf

ts = "year", logs = "gdp_pc",
p2s = 0)

fits <- with(a.out, lm(gdp_pc ~ infl * trade))

Simulate coefficients
s <- misim(fits)
s

plot.clarify_adrf Plot marginal predictions from sim_adrf()

Description

plot.clarify_adrf() plots the output of sim_adrf(). For the average dose-response function
(ADRF, requested with contrast = "adrf" in sim_adrf()), this is a plot of the average marginal
mean of the outcome against the requested values of the focal predictor; for the average marginal
effects function (AMEF, requested with contrast = "amef" in sim_adrf()), this is a plot of the
instantaneous average marginal effect of the focal predictor on the outcome against the requested
values of the focal predictor.

Usage

S3 method for class 'clarify_adrf'
plot(
x,
ci = TRUE,
level = 0.95,
method = "quantile",
baseline,
color = "black",
...

)

Arguments

x a clarify_adrf object resulting from a call to sim_adrf().

ci logical; whether to display confidence bands for the estimates. Default is
TRUE.

level the confidence level desired. Default is .95 for 95% confidence intervals.

method the method used to compute confidence bands. Can be "wald" to use a Nor-
mal approximation or "quantile" to use the simulated sampling distribution
(default). See summary.clarify_est() for details. Abbreviations allowed.

baseline logical; whether to include a horizontal line at y = 0 on the plot. Default is
FALSE for the ADRF (since 0 might not be in the range of the outcome) and
TRUE for the AMEF.

plot.clarify_est 5

color the color of the line and confidence band in the plot.

... for plot(), further arguments passed to ggplot2::geom_density().

Details

These plots are produced using ggplot2::geom_line() and ggplot2::geom_ribbon(). The con-
fidence bands should be interpreted pointwise (i.e., they do not account for simultaneous inference).

Value

A ggplot object.

See Also

summary.clarify_est() for computing p-values and confidence intervals for the estimated quan-
tities.

Examples

See help("sim_adrf") for examples

plot.clarify_est Plotting and inference for clarify_est objects

Description

summary() tabulates the estimates and confidence intervals and (optionally) p-values from a clarify_est
object. confint() computes confidence intervals. plot() plots the "posterior" distribution of esti-
mates.

Usage

S3 method for class 'clarify_est'
plot(
x,
parm,
ci = TRUE,
level = 0.95,
method = "quantile",
reference = FALSE,
ncol = 3,
...

)

S3 method for class 'clarify_est'
summary(object, parm, level = 0.95, method = "quantile", null = NA, ...)

6 plot.clarify_est

S3 method for class 'clarify_est'
confint(object, parm, level = 0.95, method = "quantile", ...)

Arguments

parm a vector of the names or indices of the estimates to plot. If unspecified, all
estimates will be displayed.

ci logical; whether to display confidence interval limits for the estimates. Default
is TRUE.

level the confidence level desired. Default is .95 for 95% confidence intervals.

method the method used to compute p-values and confidence intervals. Can be "wald"
to use a Normal approximation or "quantile" to use the simulated sampling
distribution (default). See Details. Abbreviations allowed.

reference logical; whether to overlay a normal density reference distribution over the
plots. Default is FALSE.

ncol the number of columns used when wrapping multiple plots; default is 3.

... for plot(), further arguments passed to ggplot2::geom_density().

object, x a clarify_est object; the output of a call to sim_apply() or its wrappers.

null the values of the parameters under the null hypothesis for the p-value calcula-
tions. Should have length equal to the number of quantities estimated, or one, in
which case it will be recycled, or it can be a named vector with just the names
of quantities for which null values are to be set. Set values to NA to omit p-
values for those quantities. When all values are NA, the default, no p-values are
produced.

Details

summary() uses the estimates computed from the original model as its estimates and uses the sim-
ulated parameters for inference only, in line with the recommendations of Rainey (2023).

When method = "wald", the standard deviation of the simulation estimates is used as the standard
error, which is used in the z-statistics and the confidence intervals. The p-values and confidence
intervals are valid only when the sampling distribution of the resulting statistic is normal (which
can be assessed using plot()). When method = "quantile", the confidence interval is calculated
using the quantiles of the simulation estimates corresponding to level, and the p-value is calcu-
lated as twice the proportion of simulation estimates less than or greater than null, whichever is
smaller; this is equivalent to inverting the confidence interval but is only truly valid when the true
sampling distribution is only a location shift from the sampling distribution under the null hypoth-
esis and should therefore be interpreted with caution. Using "method = "quantile" (the default)
is recommended because the confidence intervals will be valid even if the sampling distribution is
not Normally distributed. The precision of the p-values and confidence intervals depends on the
number of simulations requested (the value of n supplied to sim()).

The plots are produced using ggplot2::geom_density() and can be customized with ggplot2
functions. When reference = TRUE, a reference Normal distribution is produced using the empir-
ical mean and standard deviation of the simulated values. A blue references line is plotted at the
median of the simulated values. For Wald-based inference to be valid, the reference distribution
should overlap with the empirical distribution, in which case the quantile-based and Wald-based

plot.clarify_est 7

intervals should be similar. For quantile-based inference to be valid, the median of the estimates
should overlap with the estimated value; this is a necessary but not sufficient condition, though.

Value

For summary(), a summary.clarify_est object, which is a matrix containing the coefficient es-
timates, standard errors, test statistics, p-values, and confidence intervals. Not all columns will be
present depending on the arguments supplied to summary().

For confint(), a matrix containing the confidence intervals for the requested quantities.

For plot(), a ggplot object.

References

Rainey, C. (2023). A careful consideration of CLARIFY: Simulation-induced bias in point estimates
of quantities of interest. Political Science Research and Methods, 1–10. doi:10.1017/psrm.2023.8

See Also

• sim_apply() for applying a function to each set of simulated coefficients

Examples

data("lalonde", package = "MatchIt")
fit <- glm(I(re78 > 0) ~ treat + age + race + nodegree + re74,

data = lalonde)

s <- sim(fit, n = 100)

Compute average marginal means for `treat`
est <- sim_ame(s, var = "treat", verbose = FALSE)
coef(est)

Compute average marginal effects on risk difference
(RD) and risk ratio (RR) scale
est <- transform(est,

RD = `E[Y(1)]` - `E[Y(0)]`,
RR = `E[Y(1)]` / `E[Y(0)]`)

Compute confidence intervals and p-values,
using given null values for computing p-values
summary(est, null = c(`RD` = 0, `RR` = 1))

Same tests using normal approximation and alternate
syntax for `null`
summary(est, null = c(NA, NA, 0, 1),

normal = TRUE)

Plot the RD and RR with a reference distribution
plot(est, parm = c("RD", "RR"), reference = TRUE,

ci = FALSE)

https://doi.org/10.1017/psrm.2023.8

8 plot.clarify_setx

Plot the RD and RR with quantile confidence bounds
plot(est, parm = c("RD", "RR"), ci = TRUE)

plot.clarify_setx Plot marginal predictions from sim_setx()

Description

plot.clarify_sext() plots the output of sim_setx(), providing graphics similar to those of
plot.clarify_est() but with features specifically for plot marginal predictions. For continues
predictors, this is a plot of the marginal predictions and their confidence bands across levels of the
predictor. Otherwise, this is is a plot of simulated sampling distribution of the marginal predictions.

Usage

S3 method for class 'clarify_setx'
plot(
x,
var = NULL,
ci = TRUE,
level = 0.95,
method = "quantile",
reference = FALSE,
...

)

Arguments

x a clarify_est object resulting from a call to sim_setx().
var the name of the focal varying predictor, i.e., the variable to be on the x-axis of

the plot. All other variables with varying set values will be used to color the
resulting plot. See Details. Ignored if no predictors vary or if only one predictor
varies in the reference grid or if x1 was specified in sim_setx(). If not set,
will use the predictor with the greatest number of unique values specified in the
reference grid.

ci logical; whether to display confidence intervals or bands for the estimates.
Default is TRUE.

level the confidence level desired. Default is .95 for 95% confidence intervals.
method the method used to compute confidence intervals or bands. Can be "wald" to

use a Normal approximation or "quantile" to use the simulated sampling dis-
tribution (default). See summary.clarify_est() for details. Abbreviations
allowed.

reference logical; whether to overlay a normal density reference distribution over the
plots. Default is FALSE. Ignored when variables other than the focal varying
predictor vary.

... for plot(), further arguments passed to ggplot2::geom_density().

sim 9

Details

plot() creates one of two kinds of plots depending on how the reference grid was specified in the
call to sim_setx() and what var is set to. When the focal varying predictor (i.e., the one set in
var) is numeric and takes on three or more unique values in the reference grid, the produced plot
is a line graph displaying the value of the marginal prediction (denoted as E[Y|X]) across values
of the focal varying predictor, with confidence bands displayed when ci = TRUE. If other predictors
also vary, lines for different values will be displayed in different colors. These plots are produced
using ggplot2::geom_line() and ggplot2::geom_ribbon()

When the focal varying predictor is a factor or character or only takes on two or fewer values in the
reference grid, the produced plot is a density plot of the simulated predictions, similar to the plot
resulting from plot.clarify_est(). When other variables vary, densities for different values will
be displayed in different colors. These plots are produced using ggplot2::geom_density().

Marginal predictions are identified by the corresponding levels of the predictors that vary. The user
should keep track of whether the non-varying predictors are set at specified or automatically set
"typical" levels.

Value

A ggplot object.

See Also

summary.clarify_est() for computing p-values and confidence intervals for the estimated quan-
tities.

Examples

See help("sim_setx") for examples

sim Simulate model parameters

Description

sim() simulates model parameters from a multivariate normal or t distribution that are then used by
sim_apply() to calculate quantities of interest.

Usage

sim(fit, n = 1000, vcov = NULL, coefs = NULL, dist = NULL)

10 sim

Arguments

fit a model fit, such as the output of a call to lm() or glm(). Can be left unspecified
if coefs and vcov are not functions.

n the number of simulations to run; default is 1000. More is always better but
resulting calculations will take longer.

vcov either a square covariance matrix of the coefficient covariance estimates or a
function to use to extract it from fit. By default, uses stats::vcov() or
insight::get_varcov() if that doesn’t work.

coefs either a vector of coefficient estimates or a function to use to extract it from
fit. By default, uses stats::coef() or insight::get_parameters() if that
doesn’t work.

dist a string containing the name of the multivariate distribution to use to draw simu-
lated coefficients. Should be one of "normal" (multivariate normal distribution)
or "t({#})" (multivariate t distribution), where {#} corresponds to the desired
degrees of freedom (e.g., "t(100)"). If NULL, the right distribution to use will
be determined based on heuristics; see Details.

Details

When dist is NULL, sim() samples from a multivariate normal or t distribution depending on the
degrees of freedom extracted from insight::get_df(., type = "wald"). If Inf, a normal distri-
bution will be used; otherwise, a t-distribution with the returned degrees of freedom will be used.
Models not supported by insight will use a normal distribution.

When a multivariate normal is used, it is sampled from with means equal to the estimated coef-
ficients and the parameter covariance matrix as the covariance matrix using mvnfast::rmvn().
When a multivariate t distribution is used, it is sampled from with means equal to the estimated
coefficients and scaling matrix equal to cov*(df - 2)/df, where cov is the parameter covariance
matrix and df is the residual degrees of freedom for the model, using mvnfast::rmvt().

Value

A clarify_sim object, which has the following components:

sim.coefs a matrix containing the simulated coefficients with a column for each coefficient
and a row for each simulation

coefs the original coefficients extracted from fit or supplied to coefs.

vcov the covariance matrix of the coefficients extracted from fit or supplied to vcov

fit the original model fit supplied to fit

The "dist" attribute contains "normal" if the coefficients were sampled from a multivariate nor-
mal distribution and "t(df)" if sampled from a multivariate t distribution. The "clarify_hash"
attribute contains a unique hash generated by rlang::hash().

See Also

• misim() for simulating model coefficients after multiple imputation

• sim_apply() for applying a function to each set of simulated coefficients

sim_adrf 11

• sim_ame() for computing average marginal effects in each simulation draw

• sim_setx() for computing marginal predictions and first differences at typical values in each
simulation draw

• sim_adrf() for computing average dose-response functions in each simulation draw

Examples

data("lalonde", package = "MatchIt")
fit <- lm(re78 ~ treat * (age + race + nodegree + re74), data = lalonde)

Simulate coefficients
s <- sim(fit)
s

Could also use a robust covariance matrix, e.g.,
s <- sim(fit, vcov = "HC3")

Simulated coefficients assuming a normal distribution
for coefficients; default for `lm` objects is a t-
distribution
s <- sim(fit, dist = "normal")
s

sim_adrf Compute an average dose-response function

Description

sim_adrf() is a wrapper for sim_apply() that computes average dose-response functions (ADRFs)
and average marginal effect functions (AMEFs). An ADRF describes the relationship between val-
ues a focal variable can take and the expected value of the outcome were all units to be given each
value of the variable. An AMEF describes the relationship between values a focal variable can take
and the derivative of ADRF at each value.

Usage

sim_adrf(
sim,
var,
subset = NULL,
by = NULL,
contrast = "adrf",
at = NULL,
n = 21,
outcome = NULL,
type = NULL,
eps = 1e-05,

12 sim_adrf

verbose = TRUE,
cl = NULL

)

S3 method for class 'clarify_adrf'
print(x, digits = NULL, max.ests = 6, ...)

Arguments

sim a clarify_sim object; the output of a call to sim() or misim().

var the name of a variable for which the ADRF or AMEF is to be computed. This
variable must be present in the model supplied to sim() and must be a numeric
variable taking on more than two unique values.

subset optional; a vector used to subset the data used to compute the ADRF or AMEF.
This will be evaluated within the original dataset used to fit the model using
subset(), so nonstandard evaluation is allowed.

by a one-sided formula or character vector containing the names of variables for
which to stratify the estimates. Each quantity will be computed within each
level of the complete cross of the variables specified in by.

contrast a string naming the type of quantity to be produced: "adrf" for the ADRF (the
default) or "amef" for the AMEF.

at the levels of the variable named in var at which to evaluate the ADRF or AMEF.
Should be a vector of numeric values corresponding to possible levels of var.
If NULL, will be set to a range from slightly below the lowest observed value of
var to slightly above the largest value.

n when at = NULL, the number of points to evaluate the ADRF or AMEF. Default
is 21. Ignored when at is not NULL.

outcome a string containing the name of the outcome or outcome level for multivariate
(multiple outcomes) or multi-category outcomes. Ignored for univariate (single
outcome) and binary outcomes.

type a string containing the type of predicted values (e.g., the link or the response).
Passed to marginaleffects::get_predict() and eventually to predict() in
most cases. The default and allowable option depend on the type of model
supplied, but almost always corresponds to the response scale (e.g., predicted
probabilities for binomial models).

eps when contrast = "amef", the value by which to shift the value of var to ap-
proximate the derivative. See Details.

verbose logical; whether to display a text progress bar indicating progress and esti-
mated time remaining for the procedure. Default is TRUE.

cl a cluster object created by parallel::makeCluster(), or an integer to indi-
cate the number of child-processes (integer values are ignored on Windows) for
parallel evaluations. See pbapply::pblapply() for details. If NULL, no paral-
lelization will take place.

x a clarify_adrf object.

digits the minimum number of significant digits to be used; passed to print.data.frame().

sim_adrf 13

max.ests the maximum number of estimates to display.

... optional arguments passed to FUN.

Details

The ADRF is composed of average marginal means across levels of the focal predictor. For each
level of the focal predictor, predicted values of the outcome are computed after setting the value of
the predictor to that level, and those values of the outcome are averaged across all units in the sample
to arrive at an average marginal mean. Thus, the ADRF represent the relationship between the
"dose" (i.e., the level of the focal predictor) and the average "response" (i.e., the outcome variable).
It is the continuous analog to the average marginal effect computed for a binary predictor, e.g., using
sim_ame(). Although inference can be at each level of the predictor or between two levels of the
predictor, typically a plot of the ADRF is the most useful relevant quantity. These can be requested
using plot.clarify_adrf().

The AMEF is the derivative of the ADRF; if we call the derivative of the ADRF at each point a
"treatment effect" (i.e., the rate at which the outcome changes corresponding to a small change in
the predictor, or "treatment"), the AMEF is a function that relates the size of the treatment effect
to the level of the treatment. The shape of the AMEF is usually of less importance than the value
of the AMEF at each level of the predictor, which corresponds to the size of the treatment effect
at the corresponding level. The AMEF is computed by computing the ADRF at each level of the
focal predictor specified in at, shifting the predictor value by a tiny amount (control by eps), and
computing the ratio of the change in the outcome to the shift, then averaging this value across all
units. This quantity is related the the average marginal effect of a continuous predictor as computed
by sim_ame(), but rather than average these treatment effects across all observed levels of the
treatment, the AMEF is a function evaluated at each possible level of the treatment. The "tiny
amount" used is eps times the standard deviation of var.

Value

A clarify_adrf object, which inherits from clarify_est and is similar to the output of sim_apply(),
with the additional attributes "var" containing the variable named in var, "by" containing the
names of the variables specified in by (if any), "at" containing values at which the ADRF or AMEF
is evaluated, and "contrast" containing the argument supplied to contrast. For an ADRF, the
average marginal means will be named E[Y({v})], where {v} is replaced with the values in at.
For an AMEF, the average marginal effects will be named dY/d({x})|{a} where {x} is replaced
with var and {a} is replaced by the values in at.

See Also

plot.clarify_adrf() for plotting the ADRF or AMEF; sim_ame() for computing average marginal
effects; sim_apply(), which provides a general interface to computing any quantities for simulation-
based inference; summary.clarify_est() for computing p-values and confidence intervals for the
estimated quantities.

marginaleffects::avg_slopes() and marginaleffects::avg_predictions() for delta method-
based implementations of computing average marginal effects and average marginal means.

Examples

data("lalonde", package = "MatchIt")

14 sim_ame

Fit the model
fit <- glm(I(re78 > 0) ~ treat + age + race +

married + re74,
data = lalonde, family = binomial)

Simulate coefficients
set.seed(123)
s <- sim(fit, n = 100)

ADRF for `age`
est <- sim_adrf(s, var = "age",

at = seq(15, 55, length.out = 6),
verbose = FALSE)

est
plot(est)

AMEF for `age`
est <- sim_adrf(s, var = "age", contrast = "amef",

at = seq(15, 55, length.out = 6),
verbose = FALSE)

est
summary(est)
plot(est)

ADRF for `age` within levels of `married`
est <- sim_adrf(s, var = "age",

at = seq(15, 55, length.out = 6),
by = ~married,
verbose = FALSE)

est
plot(est)

Difference between ADRFs
est_diff <- est[7:12] - est[1:6]
plot(est_diff) + ggplot2::labs(y = "Diff")

sim_ame Compute average marginal effects

Description

sim_ame() is a wrapper for sim_apply() that computes average marginal effects, the average effect
of changing a single variable from one value to another (i.e., from one category to another for
categorical variables or a tiny change for continuous variables).

Usage

sim_ame(
sim,

sim_ame 15

var,
subset = NULL,
by = NULL,
contrast = NULL,
outcome = NULL,
type = NULL,
eps = 1e-05,
verbose = TRUE,
cl = NULL

)

S3 method for class 'clarify_ame'
print(x, digits = NULL, max.ests = 6, ...)

Arguments

sim a clarify_sim object; the output of a call to sim() or misim().

var either the names of the variables for which marginal effects are to be computed
or a named list containing the values the variables should take. See Details.

subset optional; a vector used to subset the data used to compute the marginal effects.
This will be evaluated within the original dataset used to fit the model using
subset(), so nonstandard evaluation is allowed.

by a one-sided formula or character vector containing the names of variables for
which to stratify the estimates. Each quantity will be computed within each
level of the complete cross of the variables specified in by.

contrast a string containing the name of a contrast between the average marginal means
when the variable named in var is categorical and takes on two values. Allowed
options include "diff" for the difference in means (also "rd"), "rr" for the risk
ratio (also "irr"), "log(rr): for the log risk ratio (also "log(irr)"), "sr" for
the survival ratio, "log(sr): for the log survival ratio, "srr" for the switch
relative risk (also "grrr"), "or" for the odds ratio, "log(or)" for the log odds
ratio, and "nnt" for the number needed to treat. These options are not case
sensitive, but the parentheses must be included if present.

outcome a string containing the name of the outcome or outcome level for multivariate
(multiple outcomes) or multi-category outcomes. Ignored for univariate (single
outcome) and binary outcomes.

type a string containing the type of predicted values (e.g., the link or the response).
Passed to marginaleffects::get_predict() and eventually to predict() in
most cases. The default and allowable option depend on the type of model
supplied, but almost always corresponds to the response scale (e.g., predicted
probabilities for binomial models).

eps when the variable named in var is continuous, the value by which to change the
variable values to approximate the derivative. See Details.

verbose logical; whether to display a text progress bar indicating progress and esti-
mated time remaining for the procedure. Default is TRUE.

16 sim_ame

cl a cluster object created by parallel::makeCluster(), or an integer to indi-
cate the number of child-processes (integer values are ignored on Windows) for
parallel evaluations. See pbapply::pblapply() for details. If NULL, no paral-
lelization will take place.

x a clarify_ame object.

digits the minimum number of significant digits to be used; passed to print.data.frame().

max.ests the maximum number of estimates to display.

... optional arguments passed to FUN.

Details

sim_ame() computes average adjusted predictions or average marginal effects depending on which
variables are named in var and how they are specified. Canonically, var should be specified as a
named list with the value(s) each variable should be set to. For example, specifying var = list(x1
= 0:1) computes average adjusted predictions setting x1 to 0 and 1. Specifying a variable’s values
as NULL, e.g., list(x1 = NULL), is equivalent to requesting average adjusted predictions at each
unique value of the variable when that variable is binary or a factor or character and requests the
average marginal effect of that variable otherwise. Specifying an unnamed entry in the list with a
string containing the value of that variable, e.g., list("x1") is equivalent to specifying list(x1
= NULL). Similarly, supplying a vector with the names of the variables is equivalent to specifying a
list, e.g., var = "x1" is equivalent to var = list(x1 = NULL).

Multiple variables can be supplied to var at the same time to set the corresponding variables to those
values. If all values are specified directly or the variables are categorical, e.g., list(x1 = 0:1,
x2 = c(5, 10)), this computes average adjusted predictions at each combination of the supplied
variables. If any one variable’s values is specified as NULL and the variable is continuous, the average
marginal effect of that variable will be computed with the other variables set to their corresponding
combinations. For example, if x2 is a continuous variable, specifying var = list(x1 = 0:1, x2 =
NULL) requests the average marginal effect of x2 computed first setting x1 to 0 and then setting x1
to 1. The average marginal effect can only be computed for one variable at a time.

Below are some examples of specifications and what they request, assuming x1 is a binary variable
taking on values of 0 and 1 and x2 is a continuous variable:

• list(x1 = 0:1), list(x1 = NULL), list("x1"), "x1" – the average adjusted predictions set-
ting x1 to 0 and to 1

• list(x2 = NULL), list("x2"), "x2" – the average marginal effect of x2

• list(x2 = c(5, 10)) – the average adjusted predictions setting x2 to 5 and to 10

• list(x1 = 0:1, x2 = c(5, 10)), list("x1", x2 = c(5, 10)) – the average adjusted predic-
tions setting x1 and x2 in a full cross of 0, 1 and 5, 10, respectively (e.g., (0, 5), (0, 10), (1, 5),
and (1, 10))

• list(x1 = 0:1, "x2"), list("x1", "x2"), c("x1", "x2") – the average marginal effects of
x2 setting x1 to 0 and to 1

The average adjusted prediction is the average predicted outcome value after setting all units’ value
of a variable to a specified level. (This quantity has several names, including the average poten-
tial outcome, average marginal mean, and standardized mean). When exactly two average adjusted
predictions are requested, a contrast between them can be requested by supplying an argument

sim_ame 17

to contrast (see Effect Measures section below). Contrasts can be manually computed using
transform() afterward as well; this is required when multiple average adjusted predictions are
requested (i.e., because a single variable was supplied to var with more than two levels or a combi-
nation of multiple variables was supplied).

A marginal effect is the instantaneous rate of change corresponding to changing a unit’s observed
value of a variable by a tiny amount and considering to what degree the predicted outcome changes.
The ratio of the change in the predicted outcome to the change in the value of the variable is the
marginal effect; these are averaged across the sample to arrive at an average marginal effect. The
"tiny amount" used is eps times the standard deviation of the focal variable.

The difference between using by or subset vs. var is that by and subset subset the data when
computing the requested quantity, whereas var sets the corresponding variable to given a value for
all units. For example, using by = ~v computes the quantity of interest separately for each subset
of the data defined by v, whereas setting var = list(., "v") computes the quantity of interest
for all units setting their value of v to its unique values. The resulting quantities have different
interpretations. Both by and var can be used simultaneously.

Effect measures:
The effect measures specified in contrast are defined below. Typically only "diff" is appropri-
ate for continuous outcomes and "diff" or "irr" are appropriate for count outcomes; the rest are
appropriate for binary outcomes. For a focal variable with two levels, 0 and 1, and an outcome
Y, the average marginal means will be denoted in the below formulas as E[Y(0)] and E[Y(1)],
respectively.

contrast Description Formula
"diff"/"rd" Mean/risk difference E[Y(1)] - E[Y(0)]
"rr"/"irr" Risk ratio/incidence rate ratio E[Y(1)] / E[Y(0)]
"sr" Survival ratio (1 - E[Y(1)]) / (1 - E[Y(0)])
"srr"/"grrr" Switch risk ratio 1 - sr if E[Y(1)] > E[Y(0)]

rr - 1 if E[Y(1)] < E[Y(0)]
0 otherwise

"or" Odds ratio O[Y(1)] / O[Y(0)]
where O[Y(.)] = E[Y(.)] / (1 - E[Y(.)])

"nnt" Number needed to treat 1 / rd

The log(.) versions are defined by taking the log() (natural log) of the corresponding effect
measure.

Value

A clarify_ame object, which inherits from clarify_est and is similar to the output of sim_apply(),
with the additional attributes "var" containing the variable values specified in var and "by" con-
taining the names of the variables specified in by (if any). The average adjusted predictions will be
named E[Y({v})], where {v} is replaced with the values the variables named in var take on. The
average marginal effect for a continuous var will be named E[dY/d({x})] where {x} is replaced
with var. When by is specified, the average adjusted predictions will be named E[Y({v})|{b}] and
the average marginal effect E[dY/d({x})|{b}] where {b} is a comma-separated list of of values
of the by variables at which the quantity is computed. See examples.

18 sim_ame

See Also

sim_apply(), which provides a general interface to computing any quantities for simulation-based
inference; plot.clarify_est() for plotting the output of a call to sim_ame(); summary.clarify_est()
for computing p-values and confidence intervals for the estimated quantities.

marginaleffects::avg_predictions(), marginaleffects::avg_comparisons() and marginaleffects::avg_slopes()
for delta method-based implementations of computing average marginal effects.

Examples

data("lalonde", package = "MatchIt")

Fit the model
fit <- glm(I(re78 > 0) ~ treat + age + race +

married + re74,
data = lalonde, family = binomial)

Simulate coefficients
set.seed(123)
s <- sim(fit, n = 100)

Average marginal effect of `age`
est <- sim_ame(s, var = "age", verbose = FALSE)
summary(est)

Contrast between average adjusted predictions
for `treat`
est <- sim_ame(s, var = "treat", contrast = "rr",

verbose = FALSE)
summary(est)

Average adjusted predictions for `race`; need to follow up
with contrasts for specific levels
est <- sim_ame(s, var = "race", verbose = FALSE)

est <- transform(est,
`RR(h,b)` = `E[Y(hispan)]` / `E[Y(black)]`)

summary(est)

Average adjusted predictions for `treat` within levels of
`married`, first using `subset` and then using `by`
est0 <- sim_ame(s, var = "treat", subset = married == 0,

contrast = "rd", verbose = FALSE)
names(est0) <- paste0(names(est0), "|married=0")
est1 <- sim_ame(s, var = "treat", subset = married == 1,

contrast = "rd", verbose = FALSE)
names(est1) <- paste0(names(est1), "|married=1")

summary(cbind(est0, est1))

est <- sim_ame(s, var = "treat", by = ~married,

sim_apply 19

contrast = "rd", verbose = FALSE)

est
summary(est)

Average marginal effect of `age` within levels of
married*race
est <- sim_ame(s, var = "age", by = ~married + race,

verbose = FALSE)
est
summary(est, null = 0)

Comparing AMEs between married and unmarried for
each level of `race`
est_diff <- est[4:6] - est[1:3]
names(est_diff) <- paste0("AME_diff|", levels(lalonde$race))
summary(est_diff)

Average adjusted predictions at a combination of `treat`
and `married`
est <- sim_ame(s, var = c("treat", "married"),

verbose = FALSE)
est

Average marginal effect of `age` setting `married` to 1
est <- sim_ame(s, var = list("age", married = 1),

verbose = FALSE)

sim_apply Apply a function to simulated parameter values

Description

sim_apply() applies a function that produces quantities of interest to each set of simulated coeffi-
cients produced by sim(); these calculated quantities form the posterior sampling distribution for
the quantities of interest. Capabilities are available for parallelization.

Usage

sim_apply(sim, FUN, verbose = TRUE, cl = NULL, ...)

Arguments

sim a clarify_sim object; the output of a call to sim() or misim().

FUN a function to be applied to each set of simulated coefficients. See Details.

verbose logical; whether to display a text progress bar indicating progress and esti-
mated time remaining for the procedure. Default is TRUE.

20 sim_apply

cl a cluster object created by parallel::makeCluster(), or an integer to indi-
cate the number of child-processes (integer values are ignored on Windows) for
parallel evaluations. See pbapply::pblapply() for details. If NULL, no paral-
lelization will take place.

... optional arguments passed to FUN.

Details

sim_apply() applies a function, FUN, to each set of simulated coefficients, similar to apply(). This
function should return a numeric vector containing one or more estimated quantities. This should be
a named vector to more easily keep track of the meaning of each estimated quantity. Care should be
taken to ensure that the returned vector is the same length each time FUN is called. NAs are allowed
in the output but should be avoided if possible.

The arguments to FUN can be specified in a few ways. If FUN has an argument called coefs, a
simulated set of coefficients will be passed to this argument, and FUN should compute and return a
quantity based on the coefficients (e.g., the difference between two coefficients if one wants to test
whether two coefficients are equal). If FUN has an argument called fit, a model fit object of the
same type as the one originally supplied to sim() (e.g., an lm or glm object) will be passed to this
argument, where the coefficients of the fit object have been replaced by the simulated coefficients
generated by sim(), and FUN should compute and return a quantity based on the model fit (e.g., a
computation based on the output of predict()). If neither coefs nor fit are the names of argu-
ments to FUN, the model fit object with replaced coefficients will be supplied to the first argument
of FUN.

When custom coefficients are supplied to sim(), i.e., when the coefs argument to sim() is not left
at its default value, FUN must accept a coefs argument and a warning will be thrown if it accepts
a fit argument. This is because sim_apply() does not know how to reconstruct the original fit
object with the new coefficients inserted. The quantities computed by sim_apply() must therefore
be computed directly from the coefficients.

If FUN is not supplied at all, the simulated values of the coefficients will be returned in the output
with a warning. Set FUN to NULL or verbose to FALSE to suppress this warning.

sim_apply() with multiply imputed data:
When using misim() and sim_apply() with multiply imputed data, the coefficients are supplied
to the model fit corresponding to the imputation identifier associated with each set of coefficients,
which means if FUN uses a dataset extracted from a model (e.g., using insight::get_data()), it
will do so from the model fit in the corresponding imputation.

The original estimates (see Value below) are computed as the mean of the estimates across the
imputations using the original coefficients averaged across imputations. That is, first, the coeffi-
cients estimated in the models in the imputed datasets are combined to form a single set of pooled
coefficients; then, for each imputation, the quantities of interest are computed using the pooled
coefficients; finally, the mean of the resulting estimates across the imputations are taken as the
"original" estimates. Note this procedure is only valid for quantities with symmetric sampling
distributions, which excludes quantities like risk ratios and odds ratios, but includes log risk ra-
tios and log odds ratios. The desired quantities can be transformed from their log versions using
transform().

sim_apply 21

Value

A clarify_est object, which is a matrix with a column for each estimated quantity and a row
for each simulation. The original estimates (FUN applied to the original coefficients or model fit
object) are stored in the attribute "original". The "sim_hash" attribute contains the simulation
hash produced by sim().

See Also

• sim() for generating the simulated coefficients

• summary.clarify_est() for computing p-values and confidence intervals for the estimated
quantities

• plot.clarify_est() for plotting estimated quantities and their simulated posterior sampling
distribution.

Examples

data("lalonde", package = "MatchIt")
fit <- lm(re78 ~ treat + age + race + nodegree + re74,

data = lalonde)
coef(fit)

set.seed(123)
s <- sim(fit, n = 500)

Function to compare predicted values for two units
using `fit` argument
sim_fun <- function(fit) {

pred1 <- unname(predict(fit, newdata = lalonde[1,]))
pred2 <- unname(predict(fit, newdata = lalonde[2,]))
c(pred1 = pred1, pred2 = pred2)

}

est <- sim_apply(s, sim_fun, verbose = FALSE)

Add difference between predicted values as
additional quantity
est <- transform(est, `diff 1-2` = pred1 - pred2)

Examine estimates and confidence intervals
summary(est)

Function to compare coefficients using `coefs`
argument
sim_fun <- function(coefs) {

setNames(coefs["racewhite"] - coefs["racehispan"],
"wh - his")

}

est <- sim_apply(s, sim_fun, verbose = FALSE)

Examine estimates and confidence intervals

22 sim_setx

summary(est)

Another way to do the above:
est <- sim_apply(s, FUN = NULL)
est <- transform(est,

`wh - his` = `racewhite` - `racehispan`)

summary(est, parm = "wh - his")

sim_setx Compute predictions and first differences at set values

Description

sim_setx() is a wrapper for sim_apply() that computes predicted values of the outcome at spec-
ified values of the predictors, sometimes called marginal predictions. One can also compute the
difference between two marginal predictions (the "first difference"). Although any function that
accepted clarify_est objects can be used with sim_setx() output objects, a special plotting
function, plot.clarify_setx(), can be used to plot marginal predictions.

Usage

sim_setx(
sim,
x = list(),
x1 = list(),
outcome = NULL,
type = NULL,
verbose = TRUE,
cl = NULL

)

S3 method for class 'clarify_setx'
print(x, digits = NULL, max.ests = 6, ...)

Arguments

sim a clarify_sim object; the output of a call to sim() or misim().

x a data.frame containing a reference grid of predictor values or a named list of
values each predictor should take defining such a reference grid, e.g., list(v1 =
1:4, v2 = c("A", "B")). Any omitted predictors are fixed at a "typical" value.
See Details. When x1 is specified, x should identify a single reference unit.
For print(), a clarify_setx object.

x1 a data.frame or named list of the value each predictor should take to compute
the first difference from the predictor combination specified in x. x1 can only
identify a single unit. See Details.

sim_setx 23

outcome a string containing the name of the outcome or outcome level for multivariate
(multiple outcomes) or multi-category outcomes. Ignored for univariate (single
outcome) and binary outcomes.

type a string containing the type of predicted values (e.g., the link or the response).
Passed to marginaleffects::get_predict() and eventually to predict() in
most cases. The default and allowable option depend on the type of model
supplied, but almost always corresponds to the response scale (e.g., predicted
probabilities for binomial models).

verbose logical; whether to display a text progress bar indicating progress and esti-
mated time remaining for the procedure. Default is TRUE.

cl a cluster object created by parallel::makeCluster(), or an integer to indi-
cate the number of child-processes (integer values are ignored on Windows) for
parallel evaluations. See pbapply::pblapply() for details. If NULL, no paral-
lelization will take place.

digits the minimum number of significant digits to be used; passed to print.data.frame().

max.ests the maximum number of estimates to display.

... optional arguments passed to FUN.

Details

When x is a named list of predictor values, they will be crossed to form a reference grid for the
marginal predictions. Any predictors not set in x are assigned their "typical" value, which, for
factor, character, logical, and binary variables is the mode, for numeric variables is the mean, and
for ordered variables is the median. These values can be seen in the "setx" attribute of the output
object. If x is empty, a prediction will be made at a point corresponding to the typical value of
every predictor. Estimates are identified (in summary(), etc.) only by the variables that differ across
predictions.

When x1 is supplied, the first difference is computed, which here is considered as the difference
between two marginal predictions. One marginal prediction must be specified in x and another,
ideally with a single predictor changed, specified in x1.

Value

a clarify_setx object, which inherits from clarify_est and is similar to the output of sim_apply(),
with the following additional attributes:

• "setx" - a data frame containing the values at which predictions are to be made

• "fd" - whether or not the first difference is to be computed; set to TRUE if x1 is specified and
FALSE otherwise

See Also

sim_apply(), which provides a general interface to computing any quantities for simulation-based
inference; plot.clarify_setx() for plotting the output of a call to sim_setx(); summary.clarify_est()
for computing p-values and confidence intervals for the estimated quantities.

24 transform.clarify_est

Examples

data("lalonde", package = "MatchIt")

fit <- lm(re78 ~ treat + age + educ + married + race + re74,
data = lalonde)

Simulate coefficients
set.seed(123)
s <- sim(fit, n = 100)

Predicted values at specified values of values, typical
values for other predictors
est <- sim_setx(s, x = list(treat = 0:1,

re74 = c(0, 10000)),
verbose = FALSE)

summary(est)
plot(est)

Predicted values at specified grid of values, typical
values for other predictors
est <- sim_setx(s, x = list(age = c(20, 25, 30, 35),

married = 0:1),
verbose = FALSE)

summary(est)
plot(est)

First differences of treat at specified value of
race, typical values for other predictors
est <- sim_setx(s, x = data.frame(treat = 0, race = "hispan"),

x1 = data.frame(treat = 1, race = "hispan"),
verbose = FALSE)

summary(est)
plot(est)

transform.clarify_est Transform and combine clarify_est objects

Description

transform() modifies a clarify_est object by allowing for the calculation of new quantities
from the existing quantities without re-simulating them. cbind() binds two clarify_est objects
together.

Usage

S3 method for class 'clarify_est'
transform(`_data`, ...)

transform.clarify_est 25

S3 method for class 'clarify_est'
cbind(..., deparse.level = 1)

Arguments

_data the clarify_est object to be transformed.

... for transform(), arguments in the form name = value, where name is the name
of a new quantity to be computed and value is an expression that is a function
of the existing quantities corresponding to the new quantity to be computed. See
Details. For cbind(), clarify_est objects to be combined.

deparse.level ignored.

Details

For transform(), the expression on the right side of the = should use the names of the existing
quantities (e.g., `E[Y(1)]` - `E[Y(1)]`), with ` appropriately included when the quantity name
include parentheses or brackets. Alternatively, it can use indexes prefixed by .b, e.g., .b2 - .b1,
to refer to the corresponding quantity by position. This can aid in computing derived quantities of
quantities with complicated names. (Note that if a quantity is named something like .b1, it will
need to be referred to by position rather than name, as the position-based label takes precedence).
See examples. Setting an existing value to NULL will remove that quantity from the object.

cbind() does not rename the quanities or check for uniqueness of the names, so it is important to
rename them yourself prior to combining the objects.

Value

A clarify_est object, either with new columns added (when using transform()) or combining
two clarify_est objects. Note that any type attributes corresponding to the sim_apply() wrapper
used (e.g., sim_ame()) is lost when using either function. This can affect any helper functions (e.g.,
plot()) designed to work with the output of specific wrappers.

See Also

transform(), cbind(), sim()

Examples

data("lalonde", package = "MatchIt")

Fit the model
fit <- lm(re78 ~ treat * (age + educ + race +

married + re74 + re75),
data = lalonde)

Simulate coefficients
set.seed(123)
s <- sim(fit, n = 100)

Average adjusted predictions for `treat` within
subsets of `race`

26 transform.clarify_est

est_b <- sim_ame(s, var = "treat", verbose = FALSE,
subset = race == "black")

est_b

est_h <- sim_ame(s, var = "treat", verbose = FALSE,
subset = race == "hispan")

est_h

Compute differences between adjusted predictions
est_b <- transform(est_b,

diff = `E[Y(1)]` - `E[Y(0)]`)
est_b

est_h <- transform(est_h,
diff = `E[Y(1)]` - `E[Y(0)]`)

est_h

Bind estimates together after renaming
names(est_b) <- paste0(names(est_b), "_b")
names(est_h) <- paste0(names(est_h), "_h")

est <- cbind(est_b, est_h)
est

Compute difference in race-specific differences
est <- transform(est,

`diff-diff` = .b6 - .b3)

summary(est,
parm = c("diff_b", "diff_h", "diff-diff"))

Remove last quantity by using `NULL`
transform(est, `diff-diff` = NULL)

Index

apply(), 20

cbind(), 25
cbind.clarify_est

(transform.clarify_est), 24
confint.clarify_est (plot.clarify_est),

5

ggplot2::geom_density(), 5, 6, 8, 9
ggplot2::geom_line(), 5, 9
ggplot2::geom_ribbon(), 5, 9
glm(), 10

insight::get_data(), 20
insight::get_parameters(), 2, 10
insight::get_varcov(), 2, 10

lm(), 10
log(), 17

marginaleffects::avg_comparisons(), 18
marginaleffects::avg_predictions(), 13,

18
marginaleffects::avg_slopes(), 13, 18
marginaleffects::get_predict(), 12, 15,

23
misim, 2
misim(), 10, 12, 15, 19, 20, 22
mvnfast::rmvn(), 10
mvnfast::rmvt(), 10

parallel::makeCluster(), 12, 16, 20, 23
pbapply::pblapply(), 12, 16, 20, 23
plot.clarify_adrf, 4
plot.clarify_adrf(), 13
plot.clarify_est, 5
plot.clarify_est(), 8, 9, 18, 21
plot.clarify_setx, 8
plot.clarify_setx(), 22, 23
print.clarify_adrf (sim_adrf), 11
print.clarify_ame (sim_ame), 14

print.clarify_setx (sim_setx), 22
print.data.frame(), 12, 16, 23

rlang::hash(), 3, 10

sim, 9
sim(), 3, 6, 12, 15, 19, 21, 22, 25
sim_adrf, 11
sim_adrf(), 4, 11
sim_ame, 14
sim_ame(), 3, 11, 13
sim_apply, 19
sim_apply(), 2, 3, 6, 7, 9–11, 13, 14, 18, 22,

23
sim_setx, 22
sim_setx(), 3, 8, 11
stats::coef(), 2, 10
stats::vcov(), 2, 10
subset(), 12, 15
summary.clarify_est (plot.clarify_est),

5
summary.clarify_est(), 4, 5, 8, 9, 13, 18,

21, 23

transform(), 17, 20, 25
transform.clarify_est, 24

27

	misim
	plot.clarify_adrf
	plot.clarify_est
	plot.clarify_setx
	sim
	sim_adrf
	sim_ame
	sim_apply
	sim_setx
	transform.clarify_est
	Index

